Différences entre versions de « Projets:Bionicohand »

De wikiup
Sauter à la navigation Sauter à la recherche
 
(63 versions intermédiaires par 3 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
[[File:hackberry.jpg|250px|right]]
+
{{Infobox projet
 +
|Image principale=Ensemble-bionico1.png
 +
|Description=Myohand à abduction du pouce motorisé et à réparer soi-même.
 +
|Porteur de projet=Bionico
 +
|Contributeurs=Bionico
 +
|Fabmanager=Bionico
 +
|Référent documentation=Bionico
 +
|Catégorie de handicap=Membre supérieur
 +
|Etat d'avancement=En cours
 +
|Statut de la documentation=Partielle
 +
|Relecture de la documentation=Non vérifiée
 +
|Licence=by-sa
 +
|Projet date=2020-03-10
 +
|Nom humanlab=Humanlab_MHK
 +
}}
  
==Description du projet==
+
==Motivations du projet==
  
Bionicohand : prothèse d'avant-bras commandée par des capteurs musculaires.
+
Une myohand (prothèse myoéléctrique) est destinée aux personnes amputés du membre supérieur afin de retrouver une autonomie au quotidien (vie sociale, professionnelle, transport etc.), bien que très utile, elles sont souvent rejetées par les utilisateurs (poids, contrôle, apparence, maintenance)
  
Une prothèse de main myoélctrique à prix abordable et à réparer soi-même.
+
En France, certaines prothèses sont remboursées par la sécurité sociale. L’amélioration des technologies a fait apparaître des prothèses permettant plus de possibilités de mouvements (pince latérale, crochet, index etc.) et une meilleure esthétique. Ces prothèses poly-digitales ne sont pas remboursées et coûtent de 30 000 à 70 000 euros.
  
Une myohand (prothèse myoéléctrique) est destinée aux personnes amputés du membre supérieur afin de retrouver une autonomie au quotidien (vie sociale, professionnelle, transport etc.), bien que très utile, leurs fonctions restent toutefois limitées (pince en opposition).
+
Le projet a pour but de fédérer des partenaires  pour inventer une myohand acceptée par les utilisateurs, abordable en prix avec la possibilité d'assurer la maintenance à l'aide d'une revue technique en cas  de panne. Ce projet ne vient pas concurrencer les fabricants de prothèses destinées aux pays à couvertures sociales ou aux personnes à situations financières confortables. Il souhaite apporter une aide aux pays émergents n’ayant pas l’accessibilité à l’appareillage prothétique. Le projet comporte diverses motivations : la passion envers la technologie, le partage des savoirs ; le désir d’aider les autres et un mécontentement du monde dans lequel nous vivons aujourd’hui.
  
En France, certaines prothèses sont remboursées par la sécurité sociale. L’amélioration des technologies a fait apparaître des prothèses permettant plus de possibilités de mouvements (pince latérale, crochet, index etc.) et une meilleure esthétique. Ces prothèses poly-digitales ne sont pas remboursées et coûtent « un bras », de 30 000 à 70 000 euros.
+
== Cahier des charges ==
  
Le projet a pour but de fédérer une équipe autour de la construction d’une prothèse du membre supérieur à bas coûts, en utilisant des pièces standardisées et open source, facilement réparable et donc accessibles aux personnes à faibles ressources financières. Ce projet ne vient pas concurrencer les fabricants de prothèses destinées aux pays à couvertures sociales ou aux personnes à situations financières confortables. Il souhaite apporter une aide aux pays émergents n’ayant pas l’accessibilité à l’appareillage prothétique. Le projet comporte diverses motivations : la passion envers la technologie, le partage des savoirs ; le désir d’aider les autres et un mécontentement du monde dans lequel nous vivons aujourd’hui.
+
Myohand à abduction du pouce motorisé et à réparer soi-même.
 +
[https://drive.google.com/file/d/1_XZjoU2hLAc_4fQaOLM032f1ZeKnbaVq/view Cahier des charges]
  
== Emboiture ==
+
== Description technique ==
 +
 
 +
[[File:Schéma_description_prothèse.jpg]]
 +
[[File:Schéma_briques_techniques.jpg]]
 +
 
 +
<gallery>
 +
File:Synoptique Bionicohand(5).jpg
 +
File:Tableau_cinématique.jpg
 +
File:Tableau_motorisation.jpg
 +
File:Tableau_électronique.jpg
 +
File:Tableau_intégration_mécanique.jpg
 +
 
 +
</gallery>
 +
 
 +
== Cinématique ==
 +
 
 +
;Objectifs
 +
:Créer un mécanisme d’abduction du pouce (mouvement permettant de le positionner en position latérale ou opposée) motorisé (sans intervention manuelle avec la main opposée).
 +
 
 +
[[File:Croquis-modif-proto.jpg|300px|Croquis de travail partie mécanique bionicohand]]
 +
 
 +
 
 +
 
 +
===Modification du mécanisme développé par MHK et Orthopus===
 +
 
 +
 
 +
[https://www.google.com/url?q=https://a360.co/3zS57ay&sa=D&source=hangouts&ust=1634743749754000&usg=AOvVaw0Cu_HQ-o3iQ_Xw9to0P9Tz| Visualisation] du système mécanique bielle rotule originale et [[:File:STU-0113-kinematic_Myohand_v2_Optim v49.STEP.zip|fichier.STEP original myhohand]]
 +
:Ce modèle permet le déplacement du pouce à l'aide de l'autre main et non de manière automatique
 +
[[File:Original-3D-Orthopus-crop.png|300px|Original-3D-Orthopus]]
 +
[[File:Vue Proto imprimé original 2.png|300px|Vue Proto imprimé original]]
 +
 
 +
===Création d'une cinématique : Modélisation ===
 +
 
 +
 
 +
Afin d'imaginer les solutions techniques possibles, un système a bielle à été créer pour que les liaisons nécessaires aux différents mouvements soient possibles.
 +
 
 +
 
 +
Cette cinématique est un outils de préparation à l'intégration des nouvelles pièces, elle permet d'ajuster la taille et l'emplacement des pièces pour installer le nouveau système.
 +
 
 +
 
 +
L'animation ci-dessous montre les différents mouvements du pouce selon le sens de rotation du moteur:
 +
[[File:animation-proto-bionico1.mp4|Animation 3D du mouvement du pouce et de l'index]]
 +
 
 +
 
 +
;Modification du support supérieur du pivot pouce
 +
:Le support à été modifier pour autorisé les différents mouvement de pivot du pouce.
 +
 
 +
 
 +
[[File:Pré-assemblage-pivot-pouce.JPG.png|400px|Pré-assemblage-pivot-pouce]]
 +
 
 +
 
 +
 
 +
;Ajout d'une poulie pour simuler la motorisation
 +
:Pour ce prototype le mouvement sera générer manuellement et non pas par un moteur.
 +
 
 +
[[File:Pré-assemblage-roue-menante.png|200px|Pré-assemblage-roue-menante]]
 +
 
 +
===Créations de pièces mécaniques===
 +
 
 +
 
 +
;Pivot Pouce
 +
:La pièce en jaune forme fera pivoter le pouce via une liaison avec le disque couplé au moteur.
 +
 
 +
 
 +
[[File:PIVOT POUCE.png|300px|PIVOT POUCE]]
 +
[[File:PIVOT POUCE2.png|300px|PIVOT POUCE2]]
 +
 
 +
 
 +
;Motorisation du majeure par bielle
 +
:L'entraînement du majeure sera effectué par une bielle accouplé au disque couplé au moteur.
 +
 
 +
[[File:Motorisation Majeur par Bielle.png|400px|Motorisation Majeur par Bielle]]
 +
 
 +
===Mise en œuvre : Impression 3D===
 +
 
 +
 
 +
Petit aperçus de l'évolution des pièces du prototype imprimés en 3D
 +
 
 +
[[File:Porto-print-bionico1.jpg|400px|Impressions des pièces bionico 1]]
 +
[[File:Porto-print-bionico3-anot-mini.png|400px|Impressions des pièces bionico 3]]
 +
[[File:visualisation 3D bionico1.jpg|400px|visualisation de l'ensemble emboiture+main]]
 +
</br>
 +
 
 +
[[File:Bielle-de-transmission.png|200px]]
 +
[[File:bielle.png|200px]]
 +
[[File:pouce.png|200px]]
 +
[[File:poulie.png|200px]]
 +
[[File:Roue-motorisation.png|200px]]
 +
</br>
 +
 
 +
=== Références/ Sources ===
 +
 
 +
Il est possible de télécharger les fichiers de conception dans un logiciel de CAO afin de poursuivre les améliorations
 +
Voici les fichiers du proto développé pendant le Farbikarium et retouchés un peu après.
 +
Il y a :
 +
 
 +
* le fichier natif Fusion .f3d se trouve [[:File:Kinematic_Myohand_fabrikarium_v12.f3d.zip|'''DOWNLOAD .f3D files HERE''']]
 +
 
 +
* le fichier .setp comptabile avec d'autres logiciels de CAO Kinematic_Myohand_fabrikarium.step.zip [[:File:Kinematic_Myohand_fabrikarium.step.zip |'''DOWNLOAD .step files HERE''']]
 +
 
 +
* Un zip avec tous les fichier STL pour de l'impression et de la visualisation [[:File:fIchiers-stl-mécanique-myohand.zip|'''DOWNLOAD .stl Files HERE''']]
 +
 
 +
les fichiers natifs Solidworks avant la modification sont [[:File:fichier-solidworks-myohand.zip|'''ICI''']]
 +
 
 +
====Quelques modèles de prothèses commerciales :====
 +
 
 +
* Ottobock a également breveté une version de la prothèse Michelangelo avec un seul moteur
 +
(deux dans le version originale), afin de proposer une version plus fine :</br>
 +
https://patents.google.com/patent/DE102018100173A1/de
 +
 
 +
* SSSA My Hand :
 +
https://www.youtube.com/watch?v=fH2MVtCMwGg
 +
 
 +
* Hannes Hand :
 +
https://www.youtube.com/watch?v=CjI8X6F0UZY
 +
 
 +
== Motorisation ==
 +
 
 +
== Électronique ==
 +
 
 +
== Poignet ==
  
 
== Alimentation ==
 
== Alimentation ==
Ligne 32 : Ligne 167 :
  
 
*Le système d'alimentation comporte les éléments suivants:
 
*Le système d'alimentation comporte les éléments suivants:
** Batterie : Alimente la main électrique et les électrodes
+
** Batterie : Alimente la main électrique et les électrodes
** BMS (Batery Management System) : Gère la charge/décharge de la batterie et protège contre les courts circuits
+
** BMS (Batery Management System) : Gère la charge/décharge de la batterie et protège contre les courts circuits
** Convertisseur DC/DC : Assure la stabilité du voltage
+
** Convertisseur DC/DC : Assure la stabilité du voltage
** Interrupteur ON/OFF : Coupe l’alimentation de la main permettant de maintenir un objet serré sans contraction
+
** Interrupteur ON/OFF : Coupe l’alimentation de la main permettant de maintenir un objet serré sans contraction
** USB in : Port de recharge de la batterie (micro USB, USB-C...)
+
** USB in : Port de recharge de la batterie (micro USB, USB-C...)
  
 
[[File:BaterySystem.jpg|800px]]
 
[[File:BaterySystem.jpg|800px]]
Ligne 49 : Ligne 184 :
 
[[File:Batt-Lithium-ion.jpg|90px|left|Batterie Lithium Ion]]
 
[[File:Batt-Lithium-ion.jpg|90px|left|Batterie Lithium Ion]]
  
* '''Lithium Ion'''  
+
* '''Lithium Ion 18650'''  
 
** + moins fragile/sensible que lipo
 
** + moins fragile/sensible que lipo
 
** - taille importante
 
** - taille importante
 
 
 
 
 
 
 
 
 
  
 
[[File:Batt-Lithium-Polymère.jpg|90px|left|Batterie Lithium Polymère]]
 
[[File:Batt-Lithium-Polymère.jpg|90px|left|Batterie Lithium Polymère]]
Ligne 68 : Ligne 194 :
 
** + gain de place
 
** + gain de place
  
 
+
</br>
 
+
</br>
 
+
</br>
  
 
===Choix du convertisseur DC/DC===
 
===Choix du convertisseur DC/DC===
Ligne 139 : Ligne 265 :
  
 
[[File:Carte-HX-2S-JH20.png|400px|Carte-HX-2S-JH20]]</br>
 
[[File:Carte-HX-2S-JH20.png|400px|Carte-HX-2S-JH20]]</br>
https://www.robot-maker.com/shop/alimentation/419-bms-hx-2s-jh20-10a-419.html
 
  
https://easyeda.com/editor#id=0230096a9fb042b7be7ebfa42fd3e3d1
 
  
 +
[https://www.robot-maker.com/shop/alimentation/419-bms-hx-2s-jh20-10a-419.html| infos sur la carte]
 +
 +
 +
[https://easyeda.com/editor#id=0230096a9fb042b7be7ebfa42fd3e3d1| schématique de la carte]
  
 
==== Modèle à base de TP4056====
 
==== Modèle à base de TP4056====
Ligne 149 : Ligne 277 :
 
[[File:Carte-TP4056.png|400px|Carte-TP4056]]</br>
 
[[File:Carte-TP4056.png|400px|Carte-TP4056]]</br>
  
https://acoptex.com/project/9446/basics-project-082a-lithum-battery-charger-tp4056-at-acoptexcom/
+
[https://acoptex.com/project/9446/basics-project-082a-lithum-battery-charger-tp4056-at-acoptexcom/| infos sur le chargeur de batterie TP4056]
  
  
Ligne 179 : Ligne 307 :
  
  
https://french.alibaba.com/product-detail/hw-798a-4-1-section-18650-2s-3s-4s-lithium-battery-polymer-lithium-battery-power-display-board-1600176290041.html
+
[https://french.alibaba.com/product-detail/hw-798a-4-1-section-18650-2s-3s-4s-lithium-battery-polymer-lithium-battery-power-display-board-1600176290041.html| Lien pour se procurer la carte HW-798A-4 sur alibaba]
  
===Sources/Références===
+
===Connexion des différents éléments===
  
 +
Il s'agit de connecter les différents modules : batterie, carte de charge/protection, convertisseur DC/DC, indicateur de charge, interrupteur.</br>
 +
Cet assemblage comprend deux convertisseurs MT3608 (ne pouvant gérer qu'un ampère) montés en parallèle afin de gérer les 1,6A nécessaire au fonctionnement du moteur.</br>
 +
Pour le test nous avons connecter une pince munie de moteur.</br>
 +
[[File:schema-alimentation.png|600px|schema-alimentation bionico]] [[File:montage-tutti-alimMyohand.JPG|400px|photo du monatge]] </br>
 +
[[:File:schema-alim.pdf|schéma au format pdf]]</br>
  
* Moteur à tester pour le système de batterie : (tension nominale 6V) : https://www.faulhaber.com/fileadmin/Import/Media/FR_2224_SR_DFF.pdf
+
===Étude d'intégration du matériel dans l’emboîture===
 
 
== Capteur ==
 
 
 
== Poignet ==
 
 
 
== Motorisation ==
 
 
 
== Électronique ==
 
 
 
== Gants ==
 
 
 
 
 
== Mécanique ==
 
  
 
;Objectifs
 
;Objectifs
:Créer un mécanisme d’abduction du pouce (mouvement permettant de le positionner en position latérale ou opposée) motorisé (sans intervention manuelle avec la main opposée).
+
:Intégrer le matériel nécessaire à l'alimentation du moteur en fonction des composants choisis et des contraintes d'usage
  
[[File:Croquis-modif-proto.jpg|300px|Croquis de travail partie mécanique bionicohand]]
+
[[File:Intégration-prop1.jpeg|300px|matériel à intégrer]] [[File:Installation alim.jpg|300px|principe d'intégration]]
 +
[[File:EMBOITURE EQUIPEE.jpg|300px|emboîture équipée]]
 +
[[File:EMBOITURE EQUIPEE - VUE AR.jpg|300px|emboîture équipée-vueAR]]
  
===Cahier des charges===
 
Suite aux différents prototypes testés le cahier des charges à évolué
 
  
Contraintes :
 
* fragilité des pièces imprimées
 
* problématiques de coûts (abordable)
 
* réparabilité
 
* partage des plans qui évite délais d’approvisionnement
 
* ethétique : donner envie à une personne de porter une prothèse
 
  
Comparer différents moyens de fabrications
+
Cet exemple comprends les modules sélectionnés plus haut, ces cartes sont disponibles dans le commerce et ne sont pas forcément adaptés en dimensions. Tout comme les connections entre les modules ne sont pas tout à fait en accord avec le cahier des charges. Il sera sans doute préférable de développer un circuit permettant de prendre en compte les contraintes d'espace et la dissipation thermique nécessaire aux différents composants.</br>
* impressions materiaux fibrés carbone, métal
+
Les fichiers originaux se trouvent [[:File:fichiers-catia-EMBOITURE.zip|'''ici''']], ils ont été créer avec le logiciel catia mais contient aussi le fichier au format .stp.
* usinage (+ de fraiseuses que d'imprimantes 3D disponibles) permet de créer des pièces de rechanges via réseaux de lieux où réparation est possible
 
  
===Modification du mécanisme développé par ORTHOPUS===
+
===Sources/Références===
  
[https://www.google.com/url?q=https://a360.co/3zS57ay&sa=D&source=hangouts&ust=1634743749754000&usg=AOvVaw0Cu_HQ-o3iQ_Xw9to0P9Tz | Visualisation] du système mécanique bielle rotule originale et [[:File:STU-0113-kinematic_Myohand_v2_Optim v49.STEP.zip|fichier.STEP original myhohand]]
 
:Ce modèle permet le déplacement du pouce à l'aide de l'autre main et non de manière automatique
 
[[File:Original-3D-Orthopus-crop.png|300px|Original-3D-Orthopus]]
 
[[File:Vue Proto imprimé original 2.png|300px|Vue Proto imprimé original]]
 
  
===Création d'une cinématique : Modélisation ===
+
* Moteur à tester pour le système de batterie : (tension nominale 6V) :  
Afin d'imaginer les solutions techniques possibles, un système a bielle à été créer pour que les liaisons nécessaires aux différents mouvements soient possibles.
+
https://www.faulhaber.com/fileadmin/Import/Media/FR_2224_SR_DFF.pdf
  
Cette cinématique est un outils de préparation à l'intégration des nouvelles pièces, elle permet d'ajuster la taille et l'emplacement des pièces pour installer le nouveau système.
+
* Logiciel open source pour visualiser / modifier les fichiers STEP
 +
https://www.freecadweb.org/downloads.php
  
 +
* Logiciel open source pour créer des schémas électroniques et des pcb
 +
https://www.kicad.org/download/
  
;Modification du support supérieur du pivot pouce
 
:Le support à été modifier pour autorisé les différents mouvement de pivot du pouce.
 
  
 +
== Capteur ==
  
[[File:Pré-assemblage-pivot-pouce.JPG.png|400px|Pré-assemblage-pivot-pouce]]
+
== Emboiture ==
  
 +
== Gants ==
  
 
+
==Alimentation (Archive)==
;Ajout d'une poulie pour simuler la motorisation
 
:Pour ce prototype le mouvement sera générer manuellement et non pas par un moteur.
 
 
 
[[File:Pré-assemblage-roue-menante.png|200px|Pré-assemblage-roue-menante]]
 
 
 
===Créations de 2 pièces===
 
 
 
 
 
;Pivot Pouce
 
:La pièce en jaune forme fera pivoter le pouce via une liaison avec le disque couplé au moteur.
 
 
 
 
 
[[File:PIVOT POUCE.png|300px|PIVOT POUCE]]
 
[[File:PIVOT POUCE2.png|300px|PIVOT POUCE2]]
 
 
 
 
 
;Motorisation du majeure par bielle
 
:L'entraînement du majeure sera effectué par une bielle accouplé au disque couplé au moteur.
 
 
 
[[File:Motorisation Majeur par Bielle.png|400px|Motorisation Majeur par Bielle]]
 
 
 
 
 
===Mise en œuvre : Impression 3D===
 
Petit aperçus de l'évolution des pièces du prototype imprimés en 3D
 
 
 
[[File:Porto-print-bionico1.jpg|400px|Impressions des pièces bionico 1]]
 
 
 
=== Références/ Sources ===
 
 
 
* Ottobock a également breveté une version de la prothèse Michelangelo avec un seul moteur
 
(deux dans le version originale), afin de proposer une version plus fine :
 
https://patents.google.com/patent/DE102018100173A1/de
 
 
 
* Schunk, entreprise allemande spécialisé système de préhension
 
 
 
* SSSA My Hand :https://www.youtube.com/watch?v=fH2MVtCMwGg
 
 
 
==Alimentation==
 
  
  
  
 
[[File:Alimentation MyoHand Micro USB Elfrich.pdf]]
 
[[File:Alimentation MyoHand Micro USB Elfrich.pdf]]
 
 
  
 
==Liens utiles==
 
==Liens utiles==

Version actuelle datée du 6 juillet 2022 à 10:24

Bionicohand

Ensemble-bionico1.png

Informations
Description Myohand à abduction du pouce motorisé et à réparer soi-même.


Catégorie Membre supérieur
Etat d'avancement En cours
Techniques
Durée de fabrication
Coût matériel
Niveau
Licence by-sa
Date de création 2020-03-10
Équipe
Porteur de projet Bionico
Contributeurs Bionico
Fabmanager Bionico
Référent documentation Bionico
Nom humanlab Humanlab_MHK
Documentation
Statut de la documentation Partielle
Relecture de la documentation Non vérifiée


Motivations du projet

Une myohand (prothèse myoéléctrique) est destinée aux personnes amputés du membre supérieur afin de retrouver une autonomie au quotidien (vie sociale, professionnelle, transport etc.), bien que très utile, elles sont souvent rejetées par les utilisateurs (poids, contrôle, apparence, maintenance)

En France, certaines prothèses sont remboursées par la sécurité sociale. L’amélioration des technologies a fait apparaître des prothèses permettant plus de possibilités de mouvements (pince latérale, crochet, index etc.) et une meilleure esthétique. Ces prothèses poly-digitales ne sont pas remboursées et coûtent de 30 000 à 70 000 euros.

Le projet a pour but de fédérer des partenaires pour inventer une myohand acceptée par les utilisateurs, abordable en prix avec la possibilité d'assurer la maintenance à l'aide d'une revue technique en cas de panne. Ce projet ne vient pas concurrencer les fabricants de prothèses destinées aux pays à couvertures sociales ou aux personnes à situations financières confortables. Il souhaite apporter une aide aux pays émergents n’ayant pas l’accessibilité à l’appareillage prothétique. Le projet comporte diverses motivations : la passion envers la technologie, le partage des savoirs ; le désir d’aider les autres et un mécontentement du monde dans lequel nous vivons aujourd’hui.

Cahier des charges

Myohand à abduction du pouce motorisé et à réparer soi-même. Cahier des charges

Description technique

Schéma description prothèse.jpg Schéma briques techniques.jpg

Cinématique

Objectifs
Créer un mécanisme d’abduction du pouce (mouvement permettant de le positionner en position latérale ou opposée) motorisé (sans intervention manuelle avec la main opposée).

Croquis de travail partie mécanique bionicohand


Modification du mécanisme développé par MHK et Orthopus

Visualisation du système mécanique bielle rotule originale et fichier.STEP original myhohand

Ce modèle permet le déplacement du pouce à l'aide de l'autre main et non de manière automatique

Original-3D-Orthopus Vue Proto imprimé original

Création d'une cinématique : Modélisation

Afin d'imaginer les solutions techniques possibles, un système a bielle à été créer pour que les liaisons nécessaires aux différents mouvements soient possibles.


Cette cinématique est un outils de préparation à l'intégration des nouvelles pièces, elle permet d'ajuster la taille et l'emplacement des pièces pour installer le nouveau système.


L'animation ci-dessous montre les différents mouvements du pouce selon le sens de rotation du moteur:


Modification du support supérieur du pivot pouce
Le support à été modifier pour autorisé les différents mouvement de pivot du pouce.


Pré-assemblage-pivot-pouce


Ajout d'une poulie pour simuler la motorisation
Pour ce prototype le mouvement sera générer manuellement et non pas par un moteur.

Pré-assemblage-roue-menante

Créations de pièces mécaniques

Pivot Pouce
La pièce en jaune forme fera pivoter le pouce via une liaison avec le disque couplé au moteur.


PIVOT POUCE PIVOT POUCE2


Motorisation du majeure par bielle
L'entraînement du majeure sera effectué par une bielle accouplé au disque couplé au moteur.

Motorisation Majeur par Bielle

Mise en œuvre : Impression 3D

Petit aperçus de l'évolution des pièces du prototype imprimés en 3D

Impressions des pièces bionico 1 Impressions des pièces bionico 3 visualisation de l'ensemble emboiture+main

Bielle-de-transmission.png Bielle.png Pouce.png Poulie.png Roue-motorisation.png

Références/ Sources

Il est possible de télécharger les fichiers de conception dans un logiciel de CAO afin de poursuivre les améliorations Voici les fichiers du proto développé pendant le Farbikarium et retouchés un peu après. Il y a :

les fichiers natifs Solidworks avant la modification sont ICI

Quelques modèles de prothèses commerciales :

  • Ottobock a également breveté une version de la prothèse Michelangelo avec un seul moteur

(deux dans le version originale), afin de proposer une version plus fine :
https://patents.google.com/patent/DE102018100173A1/de

  • SSSA My Hand :

https://www.youtube.com/watch?v=fH2MVtCMwGg

  • Hannes Hand :

https://www.youtube.com/watch?v=CjI8X6F0UZY

Motorisation

Électronique

Poignet

Alimentation

Objectifs


Inventer un système d'alimentation électrique discret, fiable, abordable et sans danger pour le bon fonctionnement de la prothèse myoélectrique.

  • Contraintes :
    • 7.4V, 1000mAh min, pic de 2A
    • Recharge par câble usb (Ex : micro-usb, usb-C, apple...)
    • Composants standards (ex: accumulateurs 18650) et de préférence discrets (ex : accumulateurs 14500)
    • Interrupteur pour éteindre et allumer la prothèse instantanément (pas de temporisation à la mise hors/sous tension)
    • Indicateur visuel de décharge
    • Dispositif sécuriser et sécurisant (dissipation thermique des composants, gestion des éléments de la batterie)
  • Le système d'alimentation comporte les éléments suivants:
    • Batterie : Alimente la main électrique et les électrodes
    • BMS (Batery Management System) : Gère la charge/décharge de la batterie et protège contre les courts circuits
    • Convertisseur DC/DC : Assure la stabilité du voltage
    • Interrupteur ON/OFF : Coupe l’alimentation de la main permettant de maintenir un objet serré sans contraction
    • USB in : Port de recharge de la batterie (micro USB, USB-C...)

BaterySystem.jpg


Choix du moteur DC

Ce modèle à été sélectionné pour sa compacité et ses performances. D'après la documentation technique du micromoteur à courant continu sa tension nominale est de 6V mais sera utilisé à 7,4V, il est donné pour 1,6A.

Choix des batteries

Batterie Lithium Ion
  • Lithium Ion 18650
    • + moins fragile/sensible que lipo
    • - taille importante
Batterie Lithium Polymère
  • Lithium Polymère
    • -danger si batterie percée
    • + gain de place




Choix du convertisseur DC/DC

Objectifs :


Déterminer le matériel capable de maintenir une tension stable en sortie en fonction du taux de charge de la batterie. La charge du moteur sera simulée par une résistance de 250W de valeur : - 5 Ohm pour le fonctionnement en charge du moteur - 10 Ohm pour le fonctionnement nominale du moteur


Schéma du circuit de test du convertisseur DC/DC


Ce circuit permet de déterminer les caractéristiques "réel" du convertisseur pour déterminer sa fiabilité dans des conditions extrêmes : batterie faible, charge moteur élevée et charge nominale.


On mesure alors les tensions et courants d'entrée Vin / Iin et de sortie Vout / Iout


La températures des composants est déterminé grâce à une caméra thermique.
Prise de vue Infra-rouge du convertisseur DC/DC

Test des convertisseurs DC/DC

MT3608 et XL4005E1

MT3608 : tension d'entrée 2-24V, tension de sortie 5-28V, max 2A

Schéma de la carte MT3608


carte XL4005E1 : tension d'entrée 5-32V, tension de sortie 0.8V-30V, 5A nominal, max 8A.


carte-XL-4005E1


Tableau de mesures

Tableau-test-convertisseurDC-DC


Conclusion :

La carte MT3608 ne tient plus ses spécifications lorsque l'on dépasse 1A.
Elle n'a donc pas les caractéristiques nécessaires pour alimenter le moteur dans les conditions envisagées.


La carte XL4005E1 est surdimensionnée (5A) mais elle génère une tension de sortie plus stable et propre. Par contre elle ne fonctionne qu'en abaisseur de tension à partir de 5V donc nécessite 2 batteries de 3,7V. soit 8,4V ce qui ne gène en rien l'usage que l'on souhaite en faire.

Choix du chargeur de batterie

Objectifs :

Le chargeur ou BMS doit pouvoir gérer la charge et la décharge des batteries tout en assurant la protection (décharge profonde, échauffement) de celle-ci.
L'acronyme BMS signifie Battery Management System.

Test de chargeurs de batterie

Modèle HX-2S-JH20 10A

- Demande une tension d'entrée élevée (8,4-9V) ce qui nécessite un convertisseur afin d'élevé la tension de deux batteries (3,7x2=7,4V)
- Gestion complexe des entrées/sorties en fonction de la charge ou décharge de la batterie : ce sont physiquement les mêmes broche du circuit

Carte-HX-2S-JH20


infos sur la carte


schématique de la carte

Modèle à base de TP4056

Ce modèle permet de chargé une seule batterie

Carte-TP4056

infos sur le chargeur de batterie TP4056


Mise en parallèle des deux modules TP4056
Pour charger deux batteries il est nécessaire d'utiliser deux modules

Double-TP4056

Problème
La mise en parallèle de deux circuits de chargeTP4056 pose un problème d'isolation électrique entre les deux circuits.
En effet le fait de disposer d'une seule alimentation 5V commune pour les deux modules créer un court circuit au niveau du second circuit. Le OUT+2 est connecté au OUT-1 qui est lui même relié au -5V. De ce fait la borne OUT-2 se retrouve au même potentiel que la borne OUT+2 et créer un court-circuit franc.
Solutions 1
La solution la plus simple à mettre en place consiste à intégrer un double interrupteur N0/NC qui permet de mettre en parallèle le 5V pendant la charge et isoler les deux batteries. Pendant l'utilisation l'inter 1 sera ouvert et l'inter 2 sera fermé, ce qui nous permet de mettre en série les deux batteries et isoler les deux entrées 5V.

Schema-double-TP4056-inter

Solution 2
La seconde solution consiste à utiliser deux convertisseur DC/DC 5V vers 5V pour isoler galvaniquement l'entrée des deux circuits.

Schema-double-TP4056-isol

Test indicateur de charge à led

Modèle HW-798A
Il comporte 4 leds
De base, il est calibré pour indiquer le niveau de batterie de 1 cellule (entre 3 et 4 V environ). Il faut souder le jumper J1 pour passer à un niveau de batterie de 2 cellules (première led à 6.6V et dernière led à 7.9V)


indicateur charge de batterie 4 led HW-798A


Lien pour se procurer la carte HW-798A-4 sur alibaba

Connexion des différents éléments

Il s'agit de connecter les différents modules : batterie, carte de charge/protection, convertisseur DC/DC, indicateur de charge, interrupteur.
Cet assemblage comprend deux convertisseurs MT3608 (ne pouvant gérer qu'un ampère) montés en parallèle afin de gérer les 1,6A nécessaire au fonctionnement du moteur.
Pour le test nous avons connecter une pince munie de moteur.
schema-alimentation bionico photo du monatge
schéma au format pdf

Étude d'intégration du matériel dans l’emboîture

Objectifs
Intégrer le matériel nécessaire à l'alimentation du moteur en fonction des composants choisis et des contraintes d'usage

matériel à intégrer principe d'intégration emboîture équipée emboîture équipée-vueAR


Cet exemple comprends les modules sélectionnés plus haut, ces cartes sont disponibles dans le commerce et ne sont pas forcément adaptés en dimensions. Tout comme les connections entre les modules ne sont pas tout à fait en accord avec le cahier des charges. Il sera sans doute préférable de développer un circuit permettant de prendre en compte les contraintes d'espace et la dissipation thermique nécessaire aux différents composants.
Les fichiers originaux se trouvent ici, ils ont été créer avec le logiciel catia mais contient aussi le fichier au format .stp.

Sources/Références

  • Moteur à tester pour le système de batterie : (tension nominale 6V) :

https://www.faulhaber.com/fileadmin/Import/Media/FR_2224_SR_DFF.pdf

  • Logiciel open source pour visualiser / modifier les fichiers STEP

https://www.freecadweb.org/downloads.php

  • Logiciel open source pour créer des schémas électroniques et des pcb

https://www.kicad.org/download/


Capteur

Emboiture

Gants

Alimentation (Archive)

Alimentation MyoHand Micro USB Elfrich.pdf

Liens utiles

Emboiture DIY

Ce projet a été réalisé dans le cadre du Fabrikarium à Bombay et documenté en anglais sur le site Hackaday https://hackaday.io/project/51171-diy-prosthetic-socket